Space Weather Highlights 10 - 16 October 2005

SWO PRF 1572 18 October 2005

Solar activity was at very low to low levels. During the period, three magnetically simple spot groups were observed on the disk. Region 813 (S08, L=285, class/area, Dac/150 on 05 October) slowly decayed throughout the period, and rotated off the disk on 13 October as spotless plage. New Region 814 (S07, L=234, class/area, Hax/040 on 12 October) developed spots on the 11th in the large plage field that was associated with old Region 808. Two weak C-class flares were observed in this region, one each on 11 and 12 October. By 14 October, the region had decayed to spotless plage. New Region 815 (N08, L=111, class/area, Hsx/070 on 15 October) rotated into view on 14 October and appeared to be the return of old Region 810. During its last rotation old Region 810 was a moderately complex spot group, but produced little activity. The remainder of the disk and limb was quiet.

Solar wind data were available from the NASA Advanced Composition Explorer (ACE) spacecraft during most of the summary period. Solar wind speed ranged from a high of about 650 km/s late on 10 October to a low of near 290 km/s midday on 15 October. The period began under the waning influence of a coronal hole high speed stream. Wind speed remained elevated between 600 to 650 km/s with the IMF Bz fluctuating between +/- 5 nT through late on 11 October. Wind speed slowly declined until early on 15 October when a solar sector boundary crossing was observed followed by the onset of a weak coronal hole stream. The

period ended with a solar wind speed of 400 km/s and IMF Bz fluctuating between -8 / + 5 nT.

No greater than 10 MeV proton events were observed this period.

The greater than 2 MeV electron flux at geosynchronous orbit was at high levels on 10 - 15 October.

The geomagnetic field ranged from quiet to active levels. Geomagnetic activity was quiet to unsettled at mid latitudes during the entire summary period. Isolated active periods were observed at high latitudes on 10 and 11 October due to a geoeffective coronal hole high speed stream, and again on 15 and 16 October due to a solar sector boundary crossing followed by the onset of a weak coronal hole stream.

Space Weather Outlook 19 October - 14 November 2005

Solar activity is expected to be very low to low.

No greater than 10 MeV proton events are expected.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at high levels on 19 - 22 October, 29 October – 02 November, and 05 - 11 November.

The geomagnetic field is expected to range from quiet to minor storm levels. Unsettled to active levels are possible on 22-24 October and unsettled to minor storm levels are possible on 04-06 November due to recurrent coronal hole high speed wind streams. Otherwise, expect mostly quiet conditions.

Note: SEC will be making a minor change in the Space Weather Highlights section of the Preliminary Report and Forecast of Solar Geophysical Data (PRF). At present, there are five paragraphs describing the solar geophysical environment in the Space Weather Highlights section of the PRF; solar activity, solar wind, proton events, electron flux, and geomagnetic activity. SEC's change will combine solar wind and geomagnetic activity into one paragraph describing the period's geomagnetic activity with respect to solar wind data. The Space Weather Outlook section will remain the same. We will make this change effective on 25 October 2005 with PRF #1573.

Daily Solar Data

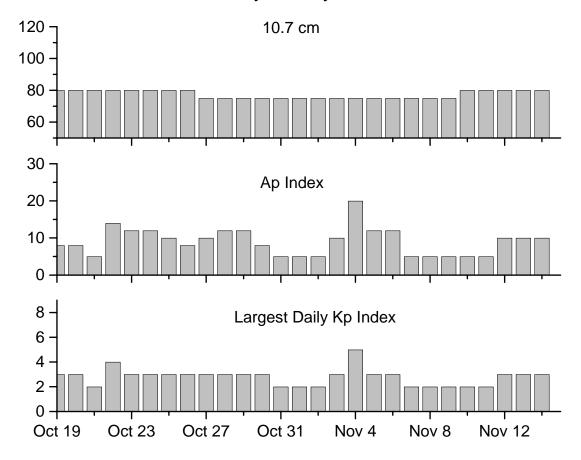
		Bully Sour Bull										
	Radio	Sun	Sunspot	X-ray	Flares							
	Flux	spot	Area	Background	X	-ray F	lux		Or	otical		
Date	10.7 cm	No.	(10 ⁻⁶ hemi.))	С	M	X	S	1	2	3	4
10 October	79	11	20	A4.5	0	0	0	0	0	0	0	0
11 October	78	25	50	A4.3	1	0	0	0	0	0	0	0
12 October	77	17	40	A3.4	1	0	0	1	0	0	0	0
13 October	78	11	10	A4.1	0	0	0	0	0	0	0	0
14 October	78	11	50	A3.5	0	0	0	0	0	0	0	0
15 October	80	11	70	A3.2	0	0	0	0	0	0	0	0
16 October	79	11	50	A2.8	0	0	0	0	0	0	0	0

Daily Particle Data

		oton Fluence ons/cm ² -day-si	Electron Fluence (electrons/cm ² -day-sr)	
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV
10 October	1.7E+6	1.3E+4	3.2E+3	2.6E+8
11 October	6.8E + 5	1.4E+4	3.4E+3	1.1E+8
12 October	1.1E+6	1.4E+4	3.3E+3	1.3E+8
13 October	1.2E+6	1.4E+4	3.3E+3	9.6E+7
14 October	1.2E+6	1.4E+4	3.7E+3	7.7E+7
15 October	1.4E+6	1.5E+4	3.8E + 3	8.7E+7
16 October	6.7E + 5	1.4E+4	3.6E+3	1.8E+7

Daily Geomagnetic Data

	Middle Latitude	High Latitude	Estimated
	Fredericksburg	College	Planetary
Date	A K-indices	A K-indices	A K-indices
10 October	7 2-2-3-2-1-1-1-3	9 2-1-3-4-3-0-0-1	10 2-3-3-3-2-0-1-3
11 October	5 3-2-0-0-1-2-1-1	8 2-1-0-0-3-2-1-4	6 3-2-0-0-1-1-1-2
12 October	1 0-1-0-0-1-0-0-1	* *_*_*_*_*_*	1 0-0-0-0-0-0-1
13 October	2 0-0-2-0-0-1-1-0	* *_*_*_*_*_*	4 1-0-2-1-1-0-2-1
14 October	1 0-2-0-0-0-0-0	* *_*_*_*_*_*	2 1-2-0-0-1-1-0
15 October	2 0-1-0-0-1-0-1-1	4 4-0-0-1-0-0-0	2 0-1-0-0-1-0-0-1
16 October	5 0-1-2-1-1-2-3	14 0-1-4-4-4-3-2-1	8 1-1-2-2-2-2-3



Alerts and Warnings Issued

Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UTC
10.0 - 4.709	ALEDT: Electron 2MeV Internal Electron 1000 of	10.0 -+ 06.45
10 Oct 708	ALERT: Electron 2MeV Integral Flux > 1000pfu	
11 Oct 919	ALERT: Electron 2MeV Integral Flux > 1000pfu	11 Oct 0855
11 Oct 2021	ALERT: Type II Radio Emission	11 Oct 1735
12 Oct 621	ALERT: Type II Radio Emission	12 Oct 0558
12 Oct 823	ALERT: Electron 2MeV Integral Flux > 1000pfu	12 Oct 0800
13 Oct 1004	ALERT: Electron 2MeV Integral Flux > 1000pfu	13 Oct 0940
14 Oct 1317	ALERT: Electron 2MeV Integral Flux > 1000pfu	14 Oct 1255
15 Oct 1121	ALERT: Electron 2MeV Integral Flux > 1000pfu	15 Oct 1100

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Radio Flux Planetary	
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
19 Oct	80	8	3	01 Nov	75	5	2
20	80	8	3	02	75	5	2
21	80	5	2	03	75	10	3
22	80	14	4	04	75	20	5
23	80	12	3	05	75	12	3
24	80	12	3	06	75	12	3
25	80	10	3	07	75	5	2
26	80	8	3	08	75	5	2
27	75	10	3	09	75	5	2
28	75	12	3	10	80	5	2
29	75	12	3	11	80	5	2
30	75	8	3	12	80	10	3
31	75	5	2	13	80	10	3
				14	80	10	3

Energetic Events

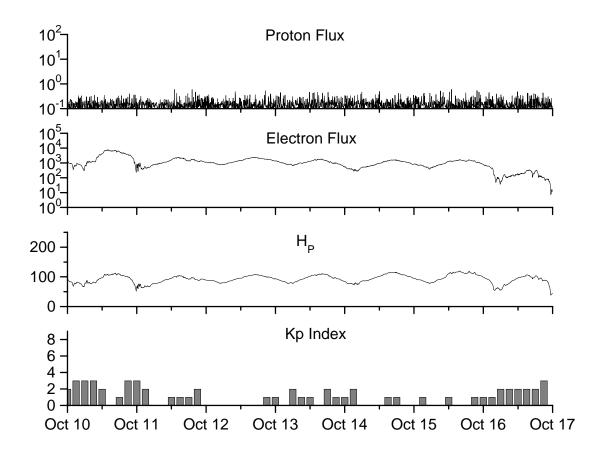
			-	anter get	te 23, e.i.is							
	Time	Time		me X		Optical Information			Peak	Sweep Freq		
Date	•	Integ	Imp/	Location	Rgn	Radio Flux	Intensity					
	Begin Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV				
	•											

No Events Observed

771	T	• ,
<i>HIare</i>		ist
' IIII E		4.51.

				I tui C List			
				Optical			_
		Time		X-ray	Imp /	Location	Rgn
Date	Begin	Max	End	Class.	Brtns	Lat CMD	
10 October	No Fla	resObser	ved				
11 October	1720	1727	1732	C1.1			814
	2207	2212	2217	B3.5			
12 October	0538	0541	0552	C1.2	Sf	S10W14	814
	1217	1220	1224	B1.2			
	1807	1812	1815	B3.2			
	1816	1819	1821	B2.5			
13 October	0901	0905	0908	B2.4			
14 October	No Fla	resObser	ved				
15 October	No Fla	resObser	ved				
16 October	1254	1302	1321	B3.0			

Region Summary																
	Locatio				Character				17		lare					
Data	(°Lat°CMD)	Helio	Area (10 ⁻⁶ hemi)	Extent	Spot Class	Spot Count	Mag Class	\overline{C}	X-ra	y X	. <u>-</u>	1	Optic 2	al3	4	
Date	(Lat CMD)	LOII	(10 Heilii)	(Helio)	Class	Count	Class		IVI	Λ	<u>.</u>	1		3	4	
	Region 813															
04 O	ct S06E30	286	0060	04	Dso	005	В									
05 O	ct S08E18	285	0150	07	Dac	021	Bg	1			2					
06 O	ct S08E05	285	0130	06	Dai	018	Bg									
07 O	ct S08W08	285	0120	06	Dao	021	Bg									
08 O	ct S08W22	285	0080	07	Dao	014	В									
09 O	ct S08W35	285	0030	04	Dso	006	В									
10 O	ct S07W48	285	0020	02	Hsx	001	A									
11 O	ct S08W62	286	0030	04	Bxo	002	В									
12 O	ct S08W75	286														
13 O	ct S08W88	286														
								1	0	0	2	0	0	0	0	
Cross	sed West Lim	ıb.														
Abso	lute heliogra	ohic lon	gitude: 285													
	Re	gion 81	4													
11 O	ct S06W11	235	0020	04	Bxo	003	В	1								
	ct S07W23	234	0040	10	Hax	007	A	1			1					
13 O	ct S13W31	228	0010	01	Axx	001	A									
	ct S13W44	228														
15 O	ct S13W57	228														
16 O	ct S13W70	228														
								2	0	0	1	0	0	0	0	
Still	on Disk.															
Abso	lute heliograj	ohic lon	gitude: 235													
	Re	gion 81	5													
14 O	ct N08E75	109	0050	03	Hax	001	A									
15 O	ct N08E60	111	0070	02	Hsx	001	A									
16 O	ct N08E47	111	0050	02	Hax	001	A									
								0	0	0	0	0	0	0	0	
Still	on Disk.															
Abso	lute heliograj	ohic lon	gitude: 111													



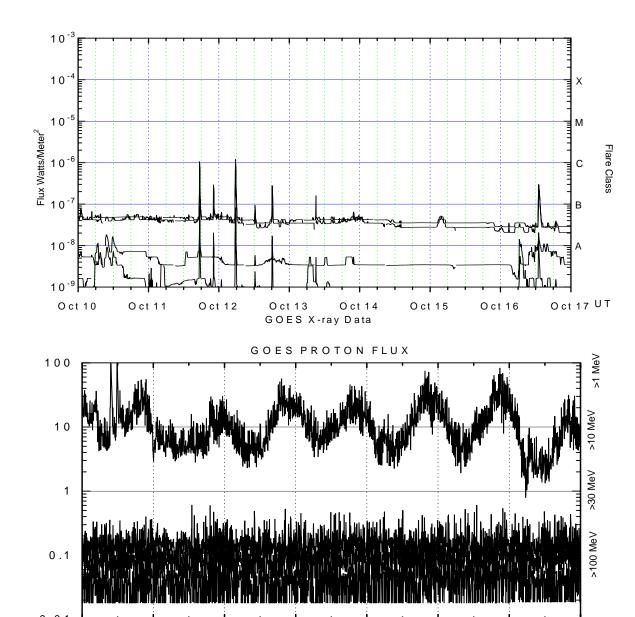
Recent Solar Indices (preliminary) of the observed monthly mean values

of the observed monthly mean values											
		Sunsp	ot Number	:S	Radio F			Geomagne	etic		
	Observed	values	<u>Ratio</u>	Smooth	values	*Penticton	Smooth	Planetary	Smooth		
Month	SWO	RI	RI/SWO	SWO	RI	10.7 cm	Value	Ap	Value		
2003											
October	118.9	65.5	0.55	96.6	58.4	153.1	121.8	35	21.1		
November	118.9	67.3	0.57	93.6	57.0	153.1	120.1	28	20.0		
December	75.4	46.5	0.62	91.4	55.0	115.1	118.0	16	18.6		
					2004						
January	62.3	37.7	0.61	87.9	52.0	114.1	116.3	22	18.1		
February	75.6	45.8	0.61	84.2	49.4	107.0	115.5	13	17.7		
March	81.0	49.1	0.61	80.9	47.2	112.2	114.6	14	16.9		
April	59.3	39.3	0.66	77.9	45.6	101.2	112.3	11	15.5		
May	77.3	41.5	0.54	74.1	43.9	99.8	109.2	8	14.3		
June	78.9	43.2	0.55	70.4	41.7	97.4	107.2	8	14.0		
July	87.8	51.0	0.58	68.3	40.2	118.5	105.9	23	13.8		
August	69.5	40.9	0.59	66.6	39.3	110.1	105.0	11	13.8		
September	50.0	27.7	0.55	63.7	37.6	103.1	103.7	10	13.6		
October	77.9	48.4	0.62	61.3	35.9	105.7	102.1	9	13.5		
November	70.5	43.7	0.62	60.0	35.4	113.2	101.5	26	14.1		
December	34.7	17.9	0.52	58.8	35.3	94.6	101.3	11	14.8		
				2	2005						
January	52.0	31.3	0.60	57.3	34.7	102.4	100.3	22	14.7		
February	45.4	29.1	0.64	56.4	34.0	97.3	98.5	11	14.6		
March	41.0	24.8	0.60	55.8	33.6	90.0	97.2	12	15.3		
A 11	41.5	24.4	0.50			0.5.0		10			
April	41.5	24.4	0.59			85.9		12			
May	65.4	42.6	0.65			99.5		20			
June	59.8	39.6	0.66			93.7		13			
July	71.0	39.9	0.56			96.6		16			
August	65.6	36.4	0.55			90.7		16			
September	39.2	22.1	0.56			90.8		21			
-											

NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI = 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 10 October 2005

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W113) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm² –sec –sr) with energies greater than 2 MeV at GOES-12 (W75).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWO and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

O ct 11

O c t 12

X-ray plot contains five-minute averaged x-ray flux (watts/m²⁾ as measured by GOES 12 (W75) and GOES 10 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

O ct 13

Oct 14

O ct 15

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W113) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

